The Kidney, Homeostasis & Water Balance

Dr Archana Jain

Osmoregulation-differential permeability forming the basis of life processes.

- Osmoconformers most marine invertebrates regulate individual ions, mg++; osmotic regulation equals the same medium in which they live.
- Osmoregulators maintain internal solute levels
 & water levels
 - Freshwater hi salt –hyperosmotic –water into body.
 - Land lose water to air; conserve water to prevent dehydration.

Nitrogenous Waste & Environment

Ammonia	Marine Organism	Aquatic
Urea	Mammals & other land animals	Terrestrial
Uric Acid	Birds & Terrestrial Reptiles	Terrestrial

Urinary System: Contribution to Homeostasis

- Regulates body water levels
 - Excess taken in is excreted
 - Output varies from 2-1/2 liter/day to 1 liter/hour
- Regulates nitrogenous and other solute waste
 - Nitrogen from amino acids made into urea as waste
 - Others: sodium, chloride, potassium, calcium, hydrogen ions, creatinine

Urinary System

Functions of Renal Organs

Organ	Urinary Functions	Other Homeostatic Functions	
Kidneys	Regulate body water volume	Help regulate blood volume and blood pressure	
	Regulate body concentrations of inorganic ions	Assist in controlling body salt balance	
	Remove metabolic wastes (primarily urea) from blood	Help regulate acid-base balance and blood pH	
		Control production of red blood cells	
		Activate vitamin D	
Ureters	Transport urine to bladder		
Urinary bladder	Stores urine until excretion		
Urethra	Transports urine to body sur		

Organs of the Urinary System

- Kidneys: principle organ, cortex, medulla
- Ureters: transports urine to bladder
- Urinary bladder: stores urine (600-1000 ml.)
- Urethra: carries urine from body, two sphincters

Nephrons Produce Urine

Tubular and Vascular Nephron Components

(b)

(a)

Nephrons: Produce Urine

- Tubules: filter fluid and reabsorb needed substances
- Tubules: proximal, loop of Henle, distal, collecting
- Blood vessels associated with tubules
- Arterioles: afferent, efferent
- Capillaries: glomerular, peritubular, vasa recta

Formation of Urine

Formation of Urine: Glomerular Filtration

- Glomerular filtration: filters fluid from capillaries into glomerular capsule
 - -Rate of filtration:
 - Resting rate under local chemical control
 - Stress causes sympathetic nervous system to reduce flow

Formation of Urine: Tubular Reabsorption

• Tubular reabsorption: returns water and needed solutes to blood capillaries

-Process:

- Sodium moved by active transport from tubule cells to interstitial fluid and diffuses to capillaries
- Chloride passively accompanies sodium (balanced charge)
- Water reabsorbed with salts
- Movement of sodium creates energy to transport glucose and amino acids into renal tubule then diffuses to the interstitial fluid

Tubular Secretion

- Tubular secretion: removes other substance from blood
 - Purpose: regulating chemical levels in body, excretion of harmful chemicals
 - Substances secreted: penicillin, cocaine, marijuana, pesticides, preservatives, hydrogen ions, ammonium, potassium

Formation of Dilute Urine

Urinary Bladder

- Smooth, collapsible, muscular sac
- Temporarily stores urine

Urethra

- Thin-walled tube that carries urine from the bladder to the outside of the body by peristalsis
- Release of urine is controlled by two sphincters
 - Internal urethral sphincter (involuntary)
 - External urethral sphincter (voluntary)

Kidney's Role in Homeostasis

- Maintains water balance: adjusts blood volume and blood pressure
- Aldosterone help maintain salt balance in order to control blood volume
- Maintains acid-base balance and blood pH
- Regulates red blood cell production via erythropoietin
- Activates an inactive form of vitamin D

Disorders of the Urinary System

• Kidney stones = minerals in urine crystallize and form solid masses.

- Acute and chronic renal failure damaged nephrons cannot be regrown by the body.
 - -Therapies:
 - Dialysis
 - Kidney transplant

Characteristics of Urine Used for Medical Diagnosis

- Colored somewhat yellow due to the pigment urochrome (from the destruction of hemoglobin) and solutes
- Sterile
- Slightly aromatic
- Normal pH of around 6 (varies 4.5-8)

Concentration or Dilution of Urine: ADH

- Dilute urine: excreting excess water
 - Absence of ADH, lower salt and urea levels

- Concentrated urine: conserving water
 - Higher ADH, higher salt and urea levels

Sweet Urine (Diabetes mellitis)

- Warning signs frequent urination, slow healing, fatigue, weight loss.
- Insulin (gate keeper); no Glucose in cells →
 no energy → no respiration; fatigue.
 Glucose stays in blood → Hi conc., more in
 Henley's loop → more water in urine to
 dilute sugar → feedback thirst → also urinate
 frequently → sugar in urine.

Sweet Urine(Diabetes mellitis) continued

• Plasma volume drops → gets dizzy.

No Glucose → no energy, cells can't divide → slow healing.

Weight loss → No G → no respiration of cells → protein & cellular tissue → stored fat → lose fat quickly → weight loss.