Mycotoxins and Mycotoxicoses

INTRODUCTION

- Mycotoxicoses are acute or chronic infections produced by intoxication of toxic metabolites of fungal origin.
- For Eg.– *Aspergillus, Fusarium , Penicillium etc.*

Factors influencing the production of mycotoxins

In Stored food
 Conditions of harvesting
 Transporting and storage
 Moisture content
 Temperature
 Aeration
 Suitable substrate

- 2. In Growing crop/pasture
 Plant species
 Stage of development of plant
- Species of fungus
 Concentration of mycotoxin in food
 Susceptibility of animal species
 Age, sex, health status
 Duration of exposure

Characteristics of Mycotoxins

- 1. Secondary fungal metabolites
- Produce toxic effects including immunosuppression, mutagenesis, carcinogenesis and teratogenesis
- Low-molecular-weight, heat-stable substances that are active at low dietary levels

- 4. Non-antigenic; exposure does not induce a protective immune response
- 5. May affect specific target organs or tissues such as the liver or central nervous system
- 6. Human exposure may result from excretion in milk or accumulation in food-animal tissues

Principal features of mycotoxicoses

- 1. Outbreaks are often seasonal and sporadic
- 2. May be associated with particular batches of stored feed or certain types of pasture
- 3. Susceptibility can vary with the species, age and sex of the animals exposed
- 4. Clinical presentation may be ill-defined

- 5. Antimicrobial treatment is ineffective
- 6. Recovery depends on type and amount of mycotoxin ingested and the duration of exposure to contaminated food
- 7. Characteristic lesions in target organs of affected animals provide supporting diagnostic evidence
- 8. Confirmation requires demonstration of significant levels of a specific mycotoxin in suspect feed or in tissues of affected animals

Mycotoxicosis of domestic animals and poultry

•				
Disease	Fungus	Crop or substrate	Mycotoxin	Animals affected
Aflatoxicosis	1. Aspergillus flavus 2. Aspergillus parasiticus	Ground nut, maize and nut crops	Afaltoxins B1, B2, G1,G2	Cattle, pig, poultry and dogs
Ergotism	Claviceps purpura	Seed heads of many grasses and grains	Ergotamine and ergometrine	Cattle, Sheep, Pig, Horse and Poultry
Ocharatoxicosis	1. Aspergillus ochraceus 2. Penicillium viridicatum	Barley, wheat and Maize	Ochratoxin -A	Pigs & Poultry

Aflatoxicosis

- Aflatoxins are toxic compounds produced by some strains of Aspergillus flavus, Aspergillus parasiticus and a number of other Aspergillus species during growth on natural substrates including growing crops and stored food.
- The name 'aflatoxin' derives from Aspergillus(a-), flavus (fla-) and toxin.

Aspergillus flavus (toxigenic strain) on Sabouraud dextrose agar, five days

- Ubiquitous,
- saprophytic moulds
- grow on a variety of cereal grains and foodstuffs such as maize, cottonseed and groundnuts.
- High humidity and high temperatures favour the growth of A. flavus and toxin production.

Aflatoxins

- Aflatoxins are compounds with toxic, carcinogenic, teratogenic and mutagenic activity.
- ▶ The four major aflatoxins are B1, B2, G1 and G2.
- Aflatoxin B1 (AFB1) is the most commonly occurring and also the most toxic and carcinogenic member of the group.
- These mycotoxins are named according to their position and fluorescent colour on thin-layer chromatograms, when viewed under ultraviolet light.
- AFB1 and AFB2 produce a blue
- AFG1 and AFG2 a green fluorescence.

- Heat Stable
- Retain much of their activity after exposure to dry heat at 250°C and moist heat at 120°C but may be degraded by sunlight.

Biological effects of aflatoxins

Acute toxicity Hepatic injury Nervous signs such as ataxia and convulsions Death may occur suddenly.

Chronic toxicity
Reduction in food conversion efficiency
Decreased milk production
Immunosuppression

Symptoms

- Calves- blindness, circling, grinding of teeth, diarrhoea, tenesmus and convulsions.
- Dairy cattle- afalatoxin M1 and M2 are excreted in the milk.
- Pigs-drowsiness, inappetance, jaundice, weight loss and yellow urine
- Other important Signs include anorexia, poor growth rate, ataxia and opisthotonus, followed by death
- Birds subcutaneous haemorrhages of legs and feet

Lesions

- Principle target organ is liver.
- Depending on the severity of intoxication—
- Hepatomegaly
- 2. Necrosis
- 3. Marked bile duct hyperplasia
- Acute hepatic failure
- In chronic toxicity- degenerative changes in the kidney

DIAGNOSIS

- Sample collection–Feed /Tissues
- Chemical identification of Mycotoxins
- Concentration of aflatoxin B1 in excess of 100µg /kg of feed are considered toxic for cattle.
- Thinlayer chromatography
- HPLC
- Radio immuno assay
- ELISA

CONTROL AND PREVENTION

- Prevention of contamination at all stages of food production, storage and use
- Decontamination procedures like physical removal and chemical treatment of aflatoxin contaminated feeds such as with acids, alkalies, aldehydes, oxidizing agents of selected gases (ammonia) have been used for degrading aflatoxins.
- High affitnity inorganic compounds such as benzoic and propionic acid have been widely used as preservatives for stored agricultural products.