

Hybridoma Technology and Monoclonal Antibodies

RAKESH SHARDA

Department of Veterinary Microbiology

NDVSU College of Veterinary Science & A.H.,

MHOW

Theory of Clonal Selection

What is a clone?

A population of cells derived from a single progenitor cell.

The adaptive immune system works by clonal selection

Antigen triggers the expansion of limited number of B cell clones that are specific for that particular antigen

Antibodies produced by a single clone of B cell are called as monoclonal antibodies

Figure 1-14 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

What are Monoclonal Antibodies?

- The antibodies of uniform specificity produced by a clone of a B cell against a single antigenic determinant or a hapten are called as **Monoclonal Antibodies (mAbs)**.
- Monoclonal antibodies are produced by Hybridoma Technology developed by Kohler and Milstein in 1975 at Oxford University
- On contrary, sum of total antibodies produced by clones of different B cells against all antigenic determinants of a multivalent antigen are called as **polyclonal antibodies**.
- Following natural infection or vaccination against a pathogen, polyclonal antibodies are produced in vivio, which are measured quantitatively by various serological tests.

Polyclonal antibodies vs Monoclonal antibodies

<u>Polyclonal antibodies</u>: antibody preparations from immunized animals. Consist of complex mixtures of different antibodies produced by many different B cell clones

Monoclonal Antibodies: homogeneous antibody preparations produced in the laboratory. Consist of a single type of antigen binding site, produced by a single B cell clone

polyclonal antiserum

monoclonal antibodies

ANTIBODIES

Polyclonal antibodies

Monoclonal Antibodies

Produced by: Many B cell clones A single B cell clone

Bind to: Multiple epitopes of all

antigens used in the

immunization

A single epitope of a single

antigen

Antibody class: A mixture of different

Ab classes (isotypes)

All of a single Ab class

Ag-binding sites: A mixture of Abs with

different antigen-binding

sites

All Abs have the same antigen

binding site

Potential for cross-reactivity: High Low

Polyclonals vs. monoclonals

Polyclonal antibodies	Monoclonal antibodies				
Produces large amounts of non specific antibodies	Can produce large amounts of specific antibodies but may be too specific				
Recognizes multiple epitopes on any one antigen	Recognizes only one epitope on an antigen				
Inexpensive to produce	Expensive to produce				
Technology required is low	High technology required				
Skills required are low	Training is required for the technology use				
Time scale is short	Time scale is long for hybridomas				
Can be batch to batch variability	Once a hybridoma is made it is a constant and renewable source and all batches will be identical				

How to produce mAbs?

Hyper immunize a mice against an antigen

 \downarrow

Sacrifice mice ethically and collect spleen

Sieve the spleen followed by trypsinization to obtain single B-cells

Seed cells *in vitro* in a suitable culture medium in a 96-well plate by limiting dilution

Examine wells showing single cell

Screen supernatant from such wells for production of antibody of desired specificity

Expand positive well

Problem: Splenic cells are mortal and will die soon due to apoptosis

Q - How to make spleen cells to continuously produce antibodies?

A - Hybridoma Technology

What is a hybridoma technology?

 A technique to generate continuous supply of monoclonal antibodies.

 Hybridoma is a fusion of two cells – myeloma (plasma cell tumor) cells and splenic B cells.

 Takes advantage of the unlimited growth capacity of myeloma cells and cellular machinery to produce antibodies of uniform antigenic specificity of B cells

Hybrid Cells

- Normal splenic cells are fused with a cancerous cell line
 - E.g. myeloma, lymphoma (NSO1)
- Fusion is accomplished with PEG (polyethylene glycol)
- The new hybrid cell exhibits properties of both cell types:
 - Unlimited growth (from myeloma cells)
 - Secretes monoclonal antibody (from splenic cells)
 - Or Secretes cytokines

Hybridomas are hybrids between a non-transformed antibody producing B cell and a transformed cell (myeloma) that can grow continuously in culture.

Possible Fusion Products

Plasma Cells From **Immunized Animal**

Myeloma cells

Unfused

Fused plasma cells plasma cells

Hybrid cells

Fused myeloma cells

Unfused myeloma

Q- How to make only hybridoma cells to survive and secrete antibodies?

- A 1. Pathways of nucleotide synthesis
 - 2. Non-antibody secreting myeloma cells

Pathways of synthesis of Purine nucleotides

P3.653 Myeloma cells

- This cell line can not secrete any immunoglobulins.
- This cell line is deficient either in HGPRT (hypoxantine guanine phosphoribosyl transferase) or TK (thymidine kinase deficient), which are enzymes of "salvage pathway".
- Hence "Salvage Pathway" is not possible.
- Cell line cannot survive in selection medium, which contains Aminopterin
 - Aminopterin (Folic acid antagonist) inhibits "de novo pathway"
 - "Salvage Pathway" is not possibe due to HGPRT or TK Deficiency.
- P3.653 cells die in the presence of aminopterin

Possible Fusion Products

Plasma Cells From Immunized Animal

Myeloma HGPRT Deficient

And Ig Deficient

Ig-HGPRT-

Can Use Salvage Pathway No Senescence

HAT selection is used to select for growth of hybrids and against the growth of

the parental myeloma.

Figure A-14 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Figure A-14 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Making Monoclonals

Immunization of mice

For monoclonal antibody production

- Animal is immunized with antigen
- Spleen cells are isolated

Intraperitoneal immunization

- Balb/c Mouse
- Day 0: 50 μg of Ag in complete Freund's adjuvant
- Day 14: 25 μg of Agin incomplete Freund's adjuvant
- Day 28: 25 μ g of Ag in D-PBSA
- Bleed animal and test reactivity to antigen
 - Serum is diluted 1:30
- Final boost of 10 µg antigen i.V or i.P 3 days before fusion

Aseptically isolate spleen cells

Fusing Spleen Cells With Myeloma

Purify spleen cells

- T-cell depletion (anti-Thy 1.2 followed by complement lysis)
- MACS purification (CD138)

Fusion

- Mix spleen cells and myeloma in 50 mL tube (4:1)
- Spin and resuspend pellet with 1 mL PEG over 15 s
- Mix by swirling for 75 s
- Add 1 mL of SFM (serum free medium) over 15s, swirl for 45s
- Add 2 mL SFM over 30s, swirl 90s
- Add 4 mL HAT over 30s, swirl 90s
- Add 8 mL HAT over 30s, swirl 90s
- Add Above volume in a new container, add HAT till cell concentration is 1x10⁶ cells/mL
- Add 200 μL per well 96 well/plate (200,000 cells/well)

Selection of Hybridomas

Selecting clones

- Feed wells with new HAT medium (remove old, add 150 μL new)
- Feed cells twice a week
- After about 2 weeks test supernatants of potential clones using ELISA
- Retest +ve clones in 48 hrs
- Expand clones in new 96-well plate with HT NOT HAT
- Retest suspensions, expand in 24-well plate, switch to normal medium, retest
- Expand in 4-well plate
- Cryopreserve

Cloning hybridomas from fusion

Plate at limiting dilution (<1 cell/well) in 96 well plates
Allow clones to expand

Expand positive well and test for production of antibody of desired specificity in supernatant

	•		•			•	
		•			•		

Cloning hybridomas from fusion

Plate at limiting dilution (<1 cell/well) in 96 well plates
Allow clones to expand

Expand positive well and test for production of antibody of desired specificity in supernatant

Ensuring Monoclonality

To ensure monoclonality sub-clone hybridoma

- Serially dilute @ 1 cell per 3 wells
- Use a spleen cells as feeder cells
- Feeder cells concentration @ 1x10⁶ cells/mL
- 96 well plate, 2x10⁵ cells/well
- Colonies are observed at 5 days
- Replenish with fresh medium @ day 7
- Screening Is done at day 10 and 14
- Clones are cryopreserved same way as parental clones

Antibody Production

Large amounts of antibody can be produced using animals

- Prime Balb/c animal with IFA or pristane
- Inject clone i.p
- Collect peritoneal ascites

Alternatively bioreactors are used

- Cells are cultured in hollow fibers
- Fresh media and waste are recirculated
- High concentrations of Ab produced in cell compartment
- Collected at different time points
- Others: Roller bottle, Microcarrier, Membrane bound cell culture processes

Advantages of Monoclonal Abs

- Homogeneity binds to same epitope with uniform affinity
- High specificity
- Target oriented
- Small quantity of antigen is required
- Consistent
- Limitless supply of specific reagent
- More easily tested for cross-reactivity

Disadvantages of Monoclonal Abs

- High specificity affects use as diagnostic when there is minor differences between strains
- Limited sensitivity
- Average affinity is lower than pAb
- Immune rejection
- Expensive
- Time consuming
- Skills

Uses of mAbs

MONOCLONAL ANTIBODIES: A Review

Anti-Cancer

Transplant Rejection

Autoimmune Diseases

Cardiovascular and Respiratory

Eye and Miscellaneous

Anti-Cytokines MAb - IL-1β, IL-2, IL-4, IL-5, IL-6, IL-12, IL-13, IL-17, iL-23, TNF-α

Anti-CD MAb- CD-3, CD-11, CD-19, CD-20, CD-30, CD-33 CD-38, CD-52, CD-152, CD-319

Anti-Growth factor MAb - HER-2, PDGFR, EGFR, VEGFR

MAb targeting PD-1, PCSK-9, Integrins, Complement C5 IgE, GPIIb/IIIa

Adverse Drug Reactions

Immune Reactions, Reactivation of T.B, Progressive Multifocal Leukoencephalopathy, Thrombocytopenia, Autoimmune disorders like Lupus like syndrome, vasculitis, Demyelinatingsyndrome, Nephritits, Cancer, Dermatitis, Cardiotoxicity and Cytokine storm

Nomenclature of Therapeutic mAbs

- Use suffix
 - -ximab for chimeric antibodies and
 - -umab for humanized antibodies.

Use of mAbs

 The first approved mAbs was OKT-3, which is a murine IgGa2 protein to deplete T cells in patients with acute rejection of renal allotransplant Infectious diseases

Auto-immune diseases

- Infliximab® and Adalimumab® are effective against rheumatoid arthritis, Crohn's disease and ulcerative colitis (block TNF-α and IL-2 on activated T-cells)
- Omalizumab[®] inhibition of human IgE; treatment of various types of allergic asthma

Cancer therapy

- Rituximab is a chimeric mAb that targets the CD20 B-cell antigen – B cell lymphomas
- Trastuzumab (Herceptin) anti breast cancer (against HER2/neu (erbB2) receptor)
- **Gemtuzumab ozogamicin (Mylotarg)** calicheamycin conjugated mAb against acute myelogenous leukemia (AML)

Use of mAbs

Metabolic disorders

- mAbs targeting secreted fatty acid—binding protein aP2 new treatment for type 2 diabetes
- Evolocumab and Alirocumab substantially reduced the LDL-C level by over 50%

Infectious diseases

- Raxibazumab[®] for the treatment of infectious inhalational anthrax
- Tocilizumab [®] anti IL-6 mAb used for treating COVID-19