

CYTOKINES

RAKESH SHARDA

Department of Veterinary Microbiology

NDVSU College of Veterinary Science & A.H.,

MHOW

How do Innate Immune Cells Communicate?

- Surface receptors
- Soluble factors (cytokines/chemical messengers)

What are cytokines?

- Soluble proteins
- Low molecular mass (around 8-25 kDa).
- Secreted by a large number of different cell types.
- They regulate many important biological processes
- Mediators of cell cell communication in the immune response
- They regulate the intensity and duration of the immune response
- They are NOT hormones!!!

What are cytokines?

- ► Low molecular weight, soluble proteins that are produced in response to an antigen and function as chemical messengers for regulating the innate and adaptive immune systems.
- ► Cytokines are **pleiotropic** (act on different cell types), **redundant** (different cytokines carry out the same function), and **multifunctional** (same cytokine is able to regulate a number of different functions).
- ▶ Three functional categories of cytokines:
 - a) cytokines that regulate innate immune responses,
 - b) cytokines that regulate adaptive Immune responses, and
 - c) cytokines that stimulate hematopoiesis.

What are cytokines?

Nomenclature

Cytokines released by

- lymphocytes are also called <u>LYMPHOKINES</u>
- monocytes and macrophages are also called <u>MONOKINES</u>
- leukocytes that act on other leukocytes are referred to as INTERLEUKINS
- Cytokines with chemotactic activity are also called <u>CHEMOKINES</u>

Cytokines

Lymphokines

Mature helper T cell

Monokines

Macrophage

Some important cytokines

Cytokine	Phase	Source	Target/effects
L4	Innate	Myeloid cells; epithelial/endothelial cells	Inflammation, fever, cell activation
L-2	Adaptive	Toells	Proliferation of Tand B cells; activation of NK cells and innate T cells
IL-4	Adaptive	Th2 cells; mast cells	Promotion of Th2 bias; class switching to IgE
IL-5	Adaptive	Th2 cells	Activation of eosinophils
L-6	Innate	Myeloid cells; epithelial/endothelial cells; fibroblasts	Inflammation; proliferation of B cells, promotion of antibody secretion
IL-12	Innate	Macrophages, DC	Promotion of Th1 bias; activation of NK cells/innate Tcells
IL-17: six isoforms, all from different genes	Adaptive	Subsets of Toells; other leukocytes; skeletal muscle; nervous tissue	Stimulation of inflammatory cytokines; angiogenesis; affects endothelial and epithelial cells
L-21	Innate and adaptive	Subsets of Toells	Regulation of NK cells and cytotoxic T cells; promotes cell division/proliferation
TNFα	Innate	Myeloid cells	Inflammation, fever, activation of neutrophils, apoptosis
IFN ₂	Innate	Plasmacytoid DC; fibroblasts	Promotes MHC I expression; activation of NK cells; promotes CD8 ⁺ T cell response
IFNβ	Innate	Fibroblasts	Promotes MHC I expression; activation of NK cells
IFNγ	Adaptive	Tht cells; CD8+ Tcells; NK cells; innate Tcells	Activation of macrophages/DC, promotes expression of MHC II, promotes antigen presentation
TGFβ	Adaptive	Toells; macrophages	Inhibition of Tcells, inhibition of B-cell proliferation, class switching to IgA inhibition of macrophages

IL, interleukin; NK, natural killer; Th, T helper; Ig, immunoglobulin; DC, dendritic cell; TNF, tumour necrosis factor; IFN, interferon; MHC, major histocompatibility complex; CD, cluster of differentiation; TGF, transforming growth factor.

Cytokine Storm

What is cytokine storm?

- The **cytokine storm** (hypercytokinemia) is the systemic expression of a severe immune reaction resulting in the release of more than 150 known inflammatory mediators (proinflammatory cytokines, oxygen free radicals, and coagulation factors) into the blood too quickly.
- Cytokines play an important role in normal immune responses, but having a large amount of them released in the body all at once can be harmful.
- A cytokine storm can occur as a result of an infection, autoimmune condition, or other disease.
- Signs and symptoms include high fever, inflammation (redness and swelling), and severe fatigue and nausea. Sometimes, a cytokine storm may be severe or life threatening and lead to ARDS, SIRS and MOSF.

Normal tissue response to an injury

- In the event of tissue damage, whether caused by injury or infection, inflammation is the body's first coordinated line of defense.
- It is responsible for activating both innate and adaptive immune responses so that the damage can be resolved and homeostasis restored.
- There are four stages to a classical self-limiting inflammatory response: (i) recognition of the problem, (ii) recruitment of leukocytes and other immune system components, (iii) elimination of the threat, and (iv) resolution of the inflammatory state (i.e., a return to homeostasis).

Resolution of inflammation

- The cytokines induced by PAMPs and produced by leukocytes are proinflammatory cytokines and include tumor necrosis factor alpha (TNF-α), IL-6, and members of the IL-1 family.
- TNF-α and IL-1β induce vasodilation and permeability, allowing immune cells to reach the site of damage
- IL-β and IL-6 iactivate complement and opsonization
- Proinflammatory cytokines can affect the brain, inducing behavioral and physiological symptoms such as fever, nausea, and anorexia.
- Finally following recruitment of immune cells to the site of inflammation, resolution of the damage begins.

Pathogenesis of cytokine storm

- Diverse pathogenic viruses (e.g., influenza A, SARS CoV-2) and bacteria (e.g., Francisella tularensis, Pesudomonas) have been found to induce cytokine storms or hypercytokinemia.
- These pathogens disrupt the delicate balance of a suitable inflammatory response, tipping it from being beneficial to destructive by causing large amounts of positive feedback in immune cells
- This results in exaggerated immune response and upregulation of proinflammatory cytokines, in particular TNFα, IL-1β, IL-8, and IL-6.
- Results in symptoms such as hypotension, fever, edema, respiratory distress, intravascular blood coagulation, increased viscosity of blood, thrombosis and hypotension eventually causing ARDS and organ dysfunction and death.

Management of cytokine storm

- Strategies to combat cytokine storm include compounds that target fundamental immune pathways, such as the chemokine network and the cholinergic anti-inflammatory pathway,
- Specific strategies HMGB1 antibodies and COX-2 inhibitors.
- All these lead to a downregulation of the cytokine storm, reducing the risk of tissue damage and allowing time for conventional therapies to target the pathogen directly.
- Cytosorb CytoSorb blood purification technology is indicated for treating cytokine storm
- Auronafin
- Anti-cytokine MAbs e.g Infliximab (anti-TNFα MAb),
 Sarilumab (anti IL6 Mab)

